Calculator Words

 Name \qquad Period \qquadToday we are doing a calculator activity. You need a calculator for this.
You may have played with a calculator making words by turning it upside-down. Complete the activity below by writing what letter each number is when turned upside-down and then write a word that starts with that letter.

LETTER Example of Word that begins with that letter

1 \qquad
\qquad
2 \qquad
3 \qquad
4 \qquad
\qquad

5 \qquad
\qquad
\qquad
6 \qquad
7 \qquad
\qquad
\qquad
8 \qquad
9 \qquad
\qquad
0 \qquad
Now wait before going further. We will go over this part.
Do you want your calculator to be friendlier? Try this calculation. Hit = at the end of each step.

- enter 6.2
- multiply this by itself
- add 0.23
- divide by 50
- turn the calculator upside down, and you have a friendly greeting!
- Write it here: \qquad .

Now wait until I tell you to before flipping and continuing.

How about a nice breakfast? Try this:

- multiply 17 by 2
- multiply by 1000
- divide by 6
- throw away the part to the right of the decimal
- subtract 3 Answer \qquad

Mmm! Delicious! But be sure to throw the $(68 \times 68-7) \times 5 \times 5 \times 5+220$ in the trash!

Answer

Now some questions for animal lovers:

- Does the $(19+19-1) \times 19+2 \times 3 \times 5$ have
$(47 \times 47+10 \times 10) \times 5 \times 5-3 \times 3$ or
$(47 \times 10+47 \times 10+47 \times 10+47 \times 10-1) \times 3$ or lay
$7 \times(800+9)$?
Translate Question: \qquad

Answer Question:

\qquad

- Is there one in your neighborhood 1 / 50 ?
translate \qquad answer \qquad
- What about the $2 \times 13 \times 13$? Or the $3 \times 3 \times 3 \times 3 \times 101-3000$? translate \qquad
- The $(50 \times 50 \times 3+1) \times 6-(50 \times 50 \times 4)$? (Of course, the plural of this is $(8-1) \times 8 \times(8 \times(8 \times(8+1+1)-1)-1)$, isn't it?
translate \qquad

Here's one last puzzle to decode : a whole sentence, one word per formula...

$$
\left.\begin{array}{llll}
- & \begin{array}{lll}
1 & 5 \times 67 & 17 \times 17+13
\end{array} 1+7 \times 7+1 & 3 \times(2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2+1) ", \\
(3 \times 4 \times 7 \times 13+3 / 10) \times 100 / 2 & (4 \times 6 \times 4 \times 6-7) \times(5 \times 5 \times 5 \times 5-8), " 3 / 6
\end{array}\right)
$$

translate \qquad .

